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PROPULSION ESTIMATION TECHNIQUES

by

Enoch C. Temple

Associate Professor of Mathematics

Alabama A&M University
Normal, Alabama

ABSTRACT

This paper gives a brief overview of statistical tools that are

needed to perform post flight/test reconstruction of state variables.

Linear regression, recursive linear regression, and the exact connection

between the Kalman filter and linear regression are discussed. The

regression connection is expected to serve as an aid in the application

of a recently developed analytical method of flight reconstruction to

single engine test firing data.
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1. INTRODUCTION

This paper considers the issue of post flight/test state variable

reconstruction through the application of observations made on the

output of the Space Shuttle propulsion system. The incentive for the

concepts discussed here is rooted in a NASA contract report by Rogers

(1987). Rogers used the Kalman filtering procedure to reconstruct the

state variables of the Space Shuttle propulsion system.

Since its development by Kalman (1960), the Kalman filtering metho-

dology has been a popular procedure with control engineers. Within recent

years, it has seen increased applications in other engineering areas as well

as in nonengineering areas. Although the applications have been diverse

and research on some of its defects has been quite extensive, applied statis-

ticians have not taken full advantage of the tool. This lack of use by some

applications areas may be because many publications on the topic have

obscured statistical simplicity. Often times the basic statistics concepts are

embedded in a discussion of numerical solutions to differential equations.

An objective of this paper is to give the general setup of the

Kalman filter and its connection to linear regression. A second objective

is to examine the Rogers (1987) reconstruction methodology for applica-

tion to the reconstruction of the state vector of a single Space Shuttle

Main Engine (SSME) by using static test firing data.

Throughout this paper, underlined capital letters are used to

denote vectors, capital letters denote matrices, and the identity matrix

is denoted by the letter I. All vectors are of the column type and the

transpose of any matrix or vector is denoted by using the letter T at the

superscript position. The letter E denotes the expectation operator,

N(U,_) denotes the multivariate normal probability distribution with
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mean vector U and covariance matrix _.. The caret symbol "^" written

directly above a scalar or vector denotes a statistical estimator of that

vector or scalar.

2. ESTABLISHMENT OF NOTATION

For any Space Shuttle flight, let Zt denote the observed values of

vector Z at time t. Each component of Z_t represents a relevant output

of the Space Shuttle propulsion system that can be measured. For

example, the components of Z_t may be chamber pressure, oxygen flow

rate, hydrogen flow rate, etc., for each of the three SSME's. Rogers

(1987) lists 71 components for vector Zt and 35 components for vector

X__t where _ is defined below•

Vector X t is a state vector of parameters to be estimated at time t.

It is assumed that the observation vector _-t is a function of the state

vector X__t. That is,

Z_t = h (X t) + V4

where h is some function and Vt_ N(O__,Rt).

(2.1)

State vector X__t is known

to change with respect to time according to the equation

Xt = f (Xt,t) + W__t (2.2)

where f is some function, Wt _ N(O,Q t) and E(W__t v tT) = 0.

If it is assumed that f and h in equations (2.1) and (2.2) are

linear, then numerical procedures allow us to transform these equations

to the form

XK = FK X.K_I+ W__.K
(2•3)
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_K = HK _-K + VK (2.4)

where K represents discrete values of t, WK _ N(O__, QK ) and V K

N(O ,RK).

After a Space Shuttle flight has taken place, the post flight reconstruc-

tion procedure seeks to use the observed values of ZK and the equations in

(2.3) and (2.4) to reconstruct (estimate) the parameters X K so that the estima-
^

tion error is minimized. The estimated value of X__K is denoted by X K.

, A RECURSIVE ESTIMATOR OF X

In order to complete the development of the reconstruction process

mentioned in section 2, we consider a system of equations

Z = H X + _ (3.1)

where (3.1) is a system of linear equations that has been generated by

making n observations on the single equation

Z* = H* X + E* (3.2)

where Z* and E* are vectors or scalars. H* is a jxp matrix where

j = number of components in vector Z* and X is fixed. Vector X

being fixed means that X does not change with time or does not change

as the number of observations on Z increase. If Cov(_) = 7. and

det (7) # 0, then the weighted least squares estimate of vector X is

given by

= (H T Z-I H) -I H T 7.-1 Z (3.3)

and the covariance of the estimate is given by
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Cov(X) = E [()_ - X) (,X - X) T] = (HT r -1 H) -1 = P . (3.4)

The reader should be reminded that with the appropriate assump-

tions, the maximum likelihood, the minimum variance unbiased linear as

well as the minimum mean-squared error estimator of X are identical to

^

the estimator given by equation (3.3). We also remark that Cov(X) is a

A

measure of the quality of the estimates in vector X. A detailed dis-

eussion of these estimators may be found in Elbert (1984).

In the sequel that follows, the estimator in equation (3.3) will be

rearranged so that X can be estimated by using a recursive process.

The development of the recursive process is started by assuming that

there are K observations on equation (3.2) which form the system

ZK =HK X+ EK

where Coy -_K = r K and det (r K) _ 0. By equation (3.3)

(3.5)

, (3.6)

is the estimate of X where observations up to and including observation

K are used. The covariance of the estimator is denoted by PK and

^

PK = E[(XK - X) (_X - X)T] = (HK T ZK 1 HK)-I " (3.7)

Assume that an additional measgrement _K+I has been made. Let

Z_K+I = HK+ 1 X + _eK+1 (3.8)

T
where Cov (eK+ I) = 7.K+1 and E (eK eK+ 1) = 0. Note that E (5-K 5_+1 ) = 0

means that the (K+l)th observation is independent of the 1st K observa-

tions. Putting the K observations with the (K+l)th observation yields

the system
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(3.9)

where

Cov ( jl):K! 0

\o i_:

By substituting into equation (3.3) we get

I I

,, I ZK

-_K+I = H ]H +1 ) ..... (H T : T
' , -1 K : HK+I) -O-- "

:_K+{\nz+1'J

(3.i0)

Note that we can write

-XK+I :-_-K + (XK+I - -_-K) " (3.11)

Substituting results from (3.6) and (3.10) into (3.11) and using matrix

algebra, we get

-X-K+1 = _ + (P + H +1 HK+I) HK+I ZK+I (ZK+I - HK+I -XK) " (3.12)

By substituting into equation (3.7) and using matrix algebra, we get

PK+I

' \o i
II I HK+I)-I

= (pK 1 + HK+I 7K+I-1

Substituting PK+I into equation (3.12) yields
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XK = XK + PK+I HT+I -1^ ^ _'K+I (ZK+I HK+I -XK ) (3.13)

and

PK+I (PK 1 + HT+I -1 -1= _K+I HE+I) " (3.14)

Equations (3.13) and (3.14) provide recursive equations for estimating

X and its corresponding covariance matrix P.

Recall that the estimator given in equation (3.3) may be identified
^

by using the symbol X.Xn. Therefore, if X is fixed as it is in equation

(3.1), the recursive equations of (3.13) and (3.14) have no statistical

advantage over the estimator given in equation (3.3). However, if X

changes with time where there is one observation per time interval,

then the recursive equations are quite useful. In fact, equations (3.13)

and (3.14) when combined with equations (2.3) and (2.4) form the

Kalman filtering process.

4. THE KALMAN FILTER

It is worthwhile to mention that Brown (1983) and Gelb (1974)

used matrix theory to express equations (3.13) and (3.14) as

PK+I = (I - KK+ 1 HK+ 1) PK (4.1)

^ ^

XK+ 1 : X K + KK+ 1 (ZK+ 1 - HK+ 1 X K) (4.2)

where

T -i
KK+I = PK HK+I (ZK+I + HK+I PK HK+I) (4.3)

and KK+ 1 is called the gain matrix.
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For the convenience of the reader, equations (2.3) and (2.4) are

reprinted here. That is,

XK+ 1 = Fx X K + _WK (4.4)

and

ZK+ 1 = HK+ 1 XK+I + VK+ 1 • (4.5)

When equations (4.1) and (4.2) are combined with equations (4.4) and

(4.5), two types of estimates of XK+ 1 are possible for each K. A

notation by Gelb (1974) allows for the two estimators to be distinguished.

That notation is

(-)
= the estimate of XK+ 1 using all observations up to and"-'K+I

including observation K.

PK = the estimate of P using all observations up to and including

observation K.

= XK+ 1 using all observations up to and
(+) the estimate of

K+I

including observation (K+I).

The values of _XK(1 ) and PK(1)are obtained by using equations (4.4)

and (4.5). The -XK+I vector is often called the extrapolated or pre-

dicted value of XK+ 1 and PK(+I ) is called the extrapolated variance of

The values of _ (+) and P (+) _tK+l"--'K+I -K+I are computed by substituting _ (-)

for X K in equation (4.2) and PK(1 ) for PK in equation (4.1).

The computation summary is

(4.6)
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(4.7)

(+) (-)+ ^ (_)
K+I = "-'K+I KK+I (ZK+I HK+I XK+I ) (4.8)

v(+) Hz+1)vz(+ )K+I = (I - KK+ 1 (4.9)

KK+I pK(+l) T T -1= HK+ 1 (HK+ 1 PKI1 ) + .HK+ 1 RK+I) (4.10)

Equations (4.6) to (4.10) completely describe the Kalman filtering process

when the original functions f and h of equations (2.1) and (2.2) are

linear.

However, when functions f and h are nonlinear, the state vectors

X K (K = t 0, t I .... t T) are estimated through the application of an

extended Kalman filtering procedure. This procedure requires a linear-

ization of functions f and h about some known state value X K. The

next paragraph provides a brief overview of the extended Kalman filter

concept.

Let X K be some known value of X and assume that AX is small.

A first degree Taylor series approximation of functions (2.1) and (2.2)

may be

and

X K + AX % f(X K, K) + ,

_ _ _ X=X K
• AX + _Wt (4.11)

Z t % h(XK) + ,. AX + V t .
- X=XK -

(4.12)

If it is assumed that _XK is selected so that _XK = f(XK,_ K), then

equations (4.11) and (4.12) become
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and

--- x=  X+WK
(4.13)

ZK - h(X K) = . AX + V K (4.14)
X=X K

Equation (4.13) is called the linearized dynamics equation and (4.14)

isthe linearized measurement equation. Note that equations (4.13) and

(4.14) may be transformed to equations that are equivalent to equations

(2.3) and (2.4). Hence for each discrete time K, AX K can be estimated

and error covariance matrices can be determined. The state vector

estimate at time K is then given by

^ ^=

where AX (+) is computed by substituting from equations (4 13) and
--K " "

A

(4.14) into equation (4.8). Vector XK+ 1 is computed by letting

, ^

XK+ I = X K and repeating the above procedure.

The extended Kalman filter has performed well in a large class of

applications. However, there are occasions when divergence occurs in

the state vector estimates. Divergence occurs when the computed

entries of the error covariance matrix PK become small as compared to

the actual error in the estimate of the state vector. The cause of this
l

divergence is not due to a defect in the filtering procedure, but may

be caused by the linear approximation procedure, numerical rounding

error, or an inadequate model of the system being studied. Additional

possible causes of divergence are mentioned by Gelb (1974).
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A publication by Varhaegen and Van Dooren (1986) is representa-

tive of the theoretical and experimental analyses that are currently

being done on the divergence problem. The Rogers (1987) computer

code has implemented the U-D factorized algorithm as a means of con-

trolling numerical roundoff error that may lead to divergence in the

state vector. Cheeks for other sources that may generate divergence

are conducted through computer evaluations.

5. CONCLUSION

At this point we have reviewed the general setup for a regression

problem where the parameters to be estimated are fixed. This lead to

reeursive equations (4.1), (4.2), and (4.3) which allowed for the

development of an estimation procedure for a time varying parameter.

When functions f and h are linear, it has been clearly stated that

equations (2.3) and (2.4) are the essential ingredients for state

variable reconstruction. If f and h are nonlinear, X K can be estimated

by linearing h and f__about some known vector and treating the

linearized equations as if they are equations (2.3) and (2.4).

The problem of applying the extended Kalman filtering procedure

to the static test firing data remains. The basic approach for the

application is identical to the presentation given in Section 4. There-

fore, the computer codes that have been prepared by Rogers (1987),

which are currently operational on the MSFC computer system, may be

modified so that static test data may be analyzed. The static test

setup differs from the actual flight data in that many flight associated

modules will become inactive. Therefore, after adjustments are made

for the analysis of static test data, it will be necessary to evaluate the

performance of the computer code for the divergence of parameter

estimates. XXXII- 10
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